Class 11 10. Straight Lines Exercise 10.3: NCERT Book Solutions
Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams.
NCERT Solutions
All chapters of ncert books Mathematics 10. Straight Lines Exercise 10.3 is solved by exercise and chapterwise for class 11 with questions answers also with chapter review sections which helps the students who preparing for UPSC and other competitive exams and entrance exams.
Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams. - 10. Straight Lines - Exercise 10.3: NCERT Book Solutions for class 11th. All solutions and extra or additional solved questions for 10. Straight Lines : Exercise 10.3 Mathematics class 11th:English Medium NCERT Book Solutions. Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams.
10. Straight Lines : Exercise 10.3 Mathematics class 11th:English Medium NCERT Book Solutions
Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams. - 10. Straight Lines - Exercise 10.3: NCERT Book Solutions for class 11th. All solutions and extra or additional solved questions for 10. Straight Lines : Exercise 10.3 Mathematics class 11th:English Medium NCERT Book Solutions.
Class 11 10. Straight Lines Exercise 10.3: NCERT Book Solutions
NCERT Books Subjects for class 11th Hindi Medium
10. Straight Lines
Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams.
Exercise 10.3
Exercise 10.3
Q1. Reduce the following equations into slope - intercept form and find their slopes and the y - intercepts.
(i) x + 7y = 0,
(ii) 6x + 3y – 5 = 0,
(iii) y = 0.
Solution:

Solution:

Solution:
(iii) y = 0

Q2. Reduce the following equations into intercept form and find their intercepts on the axes.
(i) 3x + 2y – 12 = 0
(ii) 4x – 3y = 6
(iii) 3y + 2 = 0.
Solution: (i) 3x + 2y – 12 = 0
Reducing into intercept form
3x + 2y = 12
Dividing by 12

Solution: (ii) 4x – 3y = 6
Reducing equation into intercept form
4x – 3y = 6
Dividing by 6

Solution: (iii) 3y + 2 = 0
Reducing equation into intercept form
0.x + 3y = - 2
Dividing by -2

Q3. Reduce the following equations into normal form. Find their perpendicular distances from the origin and angle between perpendicular and the positive x-axis.


Required normal form of the line.
X cos 120° + y sin 120° = 4
Perpendicular distance (p) = 4
And angle between perpendicular and the positive x-axis = 120°
Solution: (ii) y – 2 = 0
On reducing the equation we have

Here, comparing with general normal form x cos ω + y sin ω = p
cos ω = , sin ω = and p = 2
Hence point lies on y-axis and θ is in I quadrant.
θ = 90°
∴ ω = 90°
Required normal form of the line.
X cos 90° + y sin 90° = 2
Perpendicular distance (p) = 2
And angle between perpendicular and the positive x-axis = 90°
∴ ω θ
Solution: (iii) x – y = 4
On reducing the equation we have
x - y = 2 …. (1)
A = 1 and B = -1

Hence ω lies in VI quadrant.
θ = 45° [ θ is value of angle between 0 - 90°]
∴ ω = 360° - θ = 360° - 45° = 315°
Required normal form of the line.
x cos 315° + y sin 315° = 2
Perpendicular distance (p) = 2
And angle between perpendicular and the positive x-axis = 315°
Q4. Find the distance of the point (–1, 1) from the line 12(x + 6) = 5(y – 2).
Solution:
Given line is 12(x + 6) = 5(y – 2) which gives
⇒ 12(x + 6) = 5(y – 2)
⇒ 12x + 72 = 5y – 10
⇒ 12x – 5y + 72 + 10 = 0
⇒ 12x – 5y + 82 = 0 ….. (1)
On comparing equation (1) with general equation of line Ax + By + C = 0, we obtain
A = 12, B = - 5 and C = 82
Now distance from given point (-1, 1) to line 12x – 5y + 82 = 0 given by


Solution:

⇒ 4x + 3y = 12
⇒ 4x + 3y - 12 = 0 …..(1)
Comparing equation (1) with general equation of line Ax + By + C = 0
We obtain, A = 4, B = 3 C = -12
Let the point on x-axis be (a, 0) whose distance from given line is 4 units.

Using perpendicular distance formula;

⇒ ±(4a – 12) = 20
Here we take both +ve and –ve signs
⇒ 4a – 12 = 20 Or – 4a + 12 = 20
⇒ 4a = 32 Or – 4a = 20 – 12
⇒ 4a = 32 Or – 4a = 20 – 12 = 8
⇒ a = 8 or a = – 2
Thus the required point on x-axis are (8, 0) and (-2, 0)
Q6. Find the distance between parallel lines
(i) 15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
(ii) l (x + y) + p = 0 and l (x + y) – r = 0.
Solution:
(i) 15x + 8y – 34 = 0 and 15x + 8y + 31 = 0
Q12. Two lines passing through the point (2, 3) intersects each other at an angle of 60°. If slope of one line is 2, find equation of the other line.
Solution:
The slope of one line m1 = 2,
Let the slope of other line be m2.
And the angle between two lines is 60°
⇒ θ = 60°

Now equation of the given live which passes through (2, 3)


Now equation of the given live which passes through (2, 3)
Q13. Find the equation of the right bisector of the line segment joining the points (3, 4) and (–1, 2).
Solution:
Right bisector means perpendicular bisector of given line segment are A(3, 4) and B(-1, 2).
∵ Line bisects AB

The equation of the line passing through (1, 3) and having a slope of –2 is
(y – 3) = –2 (x – 1) y – 3 = –2x + 2
2x + y = 5
Thus, the required equation of the line is 2x + y = 5.
Q14. Find the coordinates of the foot of perpendicular from the point (–1, 3) to the line 3x – 4y – 16 = 0.

Solution:
Equation of given line is
3x – 4y – 16 = 0 …………. (1)


Q15. The perpendicular from the origin to the line y = mx + c meets it at the point (–1, 2). Find the values of m and c.
Solution:
Slope of perpendicular line from origin (0, 0) and (–1, 2).

Q16. If p and q are the lengths of perpendiculars from the origin to the lines x cosθ - ysin θ = k cos2θ and x sec θ + y cosec θ = k, respectively, prove that p2 + 4q2 = k2.
Solution:
x cos θ – y sinθ = k cos 2θ ………………. (1)
x secθ + y cosec θ = k ………………….… (2)
The perpendicular distance (d) of a line Ax + By + C = 0 from a point (x1, y1) is given by


Q17. In the triangle ABC with vertices A (2, 3), B (4, –1) and C (1, 2), find the equation and length of altitude from the vertex A.
Solution:
ABC is the triangle which vertices are A (2, 3), B (4, –1) and C (1, 2).
AD is altitude on side BC from vertex A.


Equation for Altitude AD
⇒ (y – 3) = 1 (x – 2)
⇒ y – 3 = x – 2
⇒ x – y – 2 + 3 = 0
⇒ x – y + 1 = 0
The required equation of Altitude is x – y + 1 = 0.
Now equation for line BC where slope is – 1.
⇒ (y + 1) = –1 (x – 4)
⇒ y + 1 = – x + 4
⇒ x + y + 1 – 4 = 0
⇒ x + y – 3 = 0
Length of AD = Length of the perpendicular from A (2, 3) to BC The equation of BC is x + y – 3 = 0



Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams.
See other sub-topics of this chapter:
4. Miscellaneous Exercise on Chapter - 10
Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams. - 10. Straight Lines - Exercise 10.3: NCERT Book Solutions for class 11th. All solutions and extra or additional solved questions for 10. Straight Lines : Exercise 10.3 Mathematics class 11th:English Medium NCERT Book Solutions. Class 11 chapter 10. Straight Lines important extra short questions with solution for board exams and term 1 and term 2 exams.
Advertisement
NCERT Solutions
Select Class for NCERT Books Solutions
Notes And NCERT Solutions
Our NCERT Solution and CBSE Notes are prepared for Term 1 and Terms 2 exams also Board exam Preparation.
Mathematics Chapter List
1. Sets
2. Relations and Functions
3. Trigonometric Functions
4. Principle Of Mathematical Induction
5. Complex Numbers and Quadratic Equations
6. Linear Inequalities
7. Permutations and Combinations
8. Binomial Theorem
9. Sequences and Series
10. Straight Lines
11. Conic Sections
12. Introduction to Three Dimensional Geometry
13. Limits and Derivatives
14. Mathematical Reasoning
15. Statistics
16. Probability

