atp logo  ATP Education
Hi Guest

CBSE NOTES for class 11 th

 

5. Complex Number and Quadratic Equations : Mathematics class 11 th:English Medium NCERT Book Solutions

NCERT Books Subjects for class 11th Hindi Medium

Page 3 of 5

5. Complex Number and Quadratic Equations

 

7. Algebra of Complex Numbers

(A)   Addition of Complex numbers

Let z1 = a + ib and z2 = c + id be any two complex numbers. Then, the sum z1 + z2 is defined as follows:

z1 + z2 = (a+ib)+(c+id) = (a + c) + i (b + d), which is again a complex number.

Ex: z1 =2 + i3 and z2 = 7 + i5

z1+ z2 = (2+7) +i(3+5)

           = 9+i8

Alternative Method:

z1+ z2 = 2+i3 +7+i5

          = 2+7+i3+i5

          = 9+i(3+5)

          = 9+i8

(B) Subtraction of Complex Numbers

Given any two complex numbers z1 and z2, the difference z1z2 is defined as follows:

z1z2 = (a+ib) – (c+id) = (a–c)+i(b–d)

For example: z1= 4+i3,  z2 =3 + i7

z1z2 =(4–3)+i(3–7)= 1–i4                  

Note: {4 and 3are like term and i3 and i7 are another like term}

Alternative Method:

z1z2 =(4+i3) – (3+i7)

            =4+i3 – 3 – i7

            =4– 3+i3 – i7

            =1+i(3 – 7)

            =1-i4

(C) Multiplication of Complex numbers:

z1 × z2 = (a +ib) (c+id)

           =a(c+id) +ib(c+id)

           = ac + iad + ibc +(bd)

           = ac bd +i(ad+bc)

For example: z­1= 2+3i, z2=5 +2i

1× z2 = (2+3i)( 5 +2i)

           = (2×5 – 3×2)+ i(2×2+3×5)

            = 10 – 6 + i(4+15)

            = 4 + 19i

Alternative Method:

1× z2 = (2+3i)( 5 +2i)

           =2( 5 +2i) +3i( 5 +2i)

           = 10 + 4i + 15i + 6i2

           = 10 + 4i + 15i + 6(–1)     

           = 10 – 6 + 19i

           = 4 + 19i

(D)Some Important identities:

  1. (z1 + z2)2 = z12 + 2 z1 z2 + z22
  2. (z1 – z2)2 = z12 – 2 z1 z2 + z22
  3. (z1 + z2)3 = z13 + 3 z12 z2 + 3 z1z22 + z23
  4. (z1 – z2)3 = z13 – 3 z12 z2 + 3 z1z22 – z23
  5. z12 – z22 = (z1 + z2)( z1 – z2)

ATP Education
www.atpeducation.com ATP Education www.atpeducation.com

ATP Education

 

 

Advertisement

NCERT Solutions

Select Class for NCERT Books Solutions

 

 

 

Notes And NCERT Solutions

Our NCERT Solution and CBSE Notes are prepared for Term 1 and Terms 2 exams also Board exam Preparation.

Advertisement

Chapter List


Our Educational Apps On Google Play Store