atp logo  ATP Education
Hi Guest

CBSE NOTES for class 11 th

 

1. Sets : Mathematics class 11 th:English Medium NCERT Book Solutions

NCERT Books Subjects for class 11th Hindi Medium

Page 5 of 7

1. Sets

 

Exercise 1.5 


Q1. Let U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = { 1, 2, 3, 4}, B = { 2, 4, 6, 8 } and C = { 3, 4, 5, 6 }. Find

(i) A′

(ii) B′

(iii) (A ∪ C)′

(iv) (A ∪ B)′

(v) (A′)′

(vi) (B – C)′

Solution: Given that

U = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = { 1, 2, 3, 4}, B = { 2, 4, 6, 8 } and C = { 3, 4, 5, 6 }.

(i) A' = {5, 6, 7, 8, 9}

(ii) B' = {1, 3, 5, 7, 9}

(iii) A ∪ C = {1, 2, 3, 4, 5, 6}

Therefore, (A ∪ C)′ = {7, 8, 9}

(iv) A ∪ B = {1, 2, 3, 4, 6, 8}

Therefore, (A ∪ B)′ = {5, 7, 9}

(v) A' = {5, 6, 7, 8, 9}

(A')' = A = {1, 2, 3, 4} 

(vi) B - C = {2, 8}

   (B - C)' = 1, 3, 4, 5, 6, 7, 9} 

Q2. If U = { a, b, c, d, e, f, g, h}, find the complements of the following sets :
(i) A = {a, b, c}

(ii) B = {d, e, f, g}
(iii) C = {a, c, e, g}

(iv) D = { f, g, h, a}

Solution: Given that 

U = { a, b, c, d, e, f, g, h}

(i) A = {a, b, c} 

   A' = {d, e, f, g, h}

(ii) B = {d, e, f, g}

    B' = {a, b, c, h}

(iii) C = {a, c, e, g} 

    C' = {b, d, f, h} 

(iv) D = { f, g, h, a}

    D' = {b, c, d e}

Q3. Taking the set of natural numbers as the universal set, write down the complements of the following sets:
(i) {x : x is an even natural number}

(ii) { x : x is an odd natural number }
(iii) {x : x is a positive multiple of 3}

(iv) { x : x is a prime number }
(v) {x : x is a natural number divisible by 3 and 5}
(vi) { x : x is a perfect square }

(vii) { x : x is a perfect cube}
(viii) { x : x + 5 = 8 }

(ix) { x : 2x + 5 = 9}
(x) { x : x ≥ 7 }

(xi) { x : x ∈ N and 2x + 1 > 10 }

Solution: Given that U = { 1, 2, 3, 4, 5, 6, 7 ....}

(i) Let A = {x : x is an even natural number} 

Or A = {2, 4, 6, 8 .....} 

A' = { 1, 3, 5, 7 .....}

   = {x : x is an odd natural number}

(ii) Let B = { x : x is an odd natural number }

Or     B = { 1, 3, 5, 7 .....} 

B' = {2, 4, 6, 8 .....} 

   = {x : x is an even natural number} 

(iii) Let C = {x : x is a positive multiple of 3}

Or     C = {3, 6, 9 ....} 

C' = {1, 2, 4, 5, 7, 8, 10 .....}

   = {x: x N and x is not a multiple of 3}

(iv) Let D = { x : x is a prime number }

Or     D = {2, 3, 5, 7, 11 ... }

D' = {1, 4, 6, 8, 9, 10 ...... } 

   = {x: x is a positive composite number and x = 1}

(v) Let E = {x : x is a natural number divisible by 3 and 5}

Or     E = {15, 30, 45 .....}

E' = {x: x is a natural number that is not divisible by 3 or 5}

(vi) Let F = { x : x is a perfect square } 

F' = {x: x N and x is not a perfect square}

(vii) Let G = {x: x is a perfect cube}

G' = {x: x N and x is not a perfect cube}

(viii) Let H = {x: x + 5 = 8}

H' = {x: x N and x ≠ 3}

(ix) Let I = {x: 2x + 5 = 9}

I' = {x: x N and x ≠ 2}

(x) Let J = {x: x ≥ 7}

J' = {x: x N and x < 7}

(xi) Let K = {x: x N and 2x + 1 > 10}

K = {x: x N and x ≤ 9/2}

Q4. If U = {1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = {2, 4, 6, 8} and B = { 2, 3, 5, 7}. Verify that
(i) (A ∪ B)′ = A′ ∩ B′

(ii) (A ∩ B)′ = A′ ∪ B′

Solution: 

(i) U = {1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = {2, 4, 6, 8} and B = { 2, 3, 5, 7}.

(A ∪ B)′ = A′ ∩ B′

A ∪ B = {2, 3, 4, 5, 6, 7, 8} 

LHS = (A ∪ B)′ = {1, 9} ...(i)

RHS = A′ ∩ B′

= {1, 3, 5, 7, 9} ∩ {1, 4, 6, 8, 9} 

= {1, 9} .... (ii) 

LHS = RHS 

Hence Verified.

Solution:

(ii) U = {1, 2, 3, 4, 5, 6, 7, 8, 9 }, A = {2, 4, 6, 8} and B = { 2, 3, 5, 7}.

(A ∩ B)′ = A′ ∪ B′

A ∩ B = {2}

LHS = (A ∩ B)′ = {1, 3, 4, 5, 6, 7, 8, 9 }

RHS = A′ ∪ B′

{1, 3, 5, 7, 9} ∪ {1, 4, 6, 8, 9} 

= {1, 3, 4, 5, 6, 7, 8, 9 }

LHS = RHS 

Hence Verified 

Q5. Draw appropriate Venn diagram for each of the following :
(i) (A ∪ B)′,

(ii) A′ ∩ B′,

(iii) (A ∩ B)′,

(iv) A′ ∪ B′

Solution:

(i) (A ∪ B)′

Venn diagram of (A ∪ B)′

(ii) A′ ∩ B′,

Venn diagram of A′ ∩ B′

Note: Venn diagram of A′ ∩ B′ will be same as (A ∪ B)′

Because (A ∪ B)′ = A′ ∩ B′

(iii) (A ∩ B)′

Venn diagram of (A ∩ B)′

(iv) A′ ∪ B′

Venn diagram of A′ ∪ B′

Q6. Let U be the set of all triangles in a plane. If A is the set of all triangles with at least one angle different from 60°, what is A′?

Solution: 

A = {the set of all triangles with at least one angle different from 60°}

A' = {the set of all equilateral triangles}

Q7. Fill in the blanks to make each of the following a true statement :
(i) A ∪ A′ = . . .

(ii) φ′ ∩ A = . . .

(iii) A ∩ A′ = . . .

(iv) U′ ∩ A = . . .

Solution: 

(i) A ∪ A′ = U

(ii) φ′ = U 

Therefore φ′ ∩ A = U ∩ A = A 

so, φ′ ∩ A = A 

(iii) A ∩ A′ = φ

(iv) U′ ∩ A = φ

ATP Education
www.atpeducation.com ATP Education www.atpeducation.com

ATP Education

 

 

Advertisement

NCERT Solutions

Select Class for NCERT Books Solutions

 

 

 

Notes And NCERT Solutions

Our NCERT Solution and CBSE Notes are prepared for Term 1 and Terms 2 exams also Board exam Preparation.

Advertisement

Chapter List


Our Educational Apps On Google Play Store