ATP Education

ATEducation.com Logo

The Secure way of Learning

   Welcome! Guest

LogIn    Register       

 

Sponser's Link
Sponser's Link

Sponser's Link

Join Us On Facebook
CBSE And NCERT Solutions:

NCERT Books Solutions for Class 10 Mathematics hindi Medium 1. वास्तविक संख्याएँ

Select Your Subject: CBSE English Medium

 

NCERT SolutionsClass 10th Mathematics Chapter 1. वास्तविक संख्याएँ
Page 3 of 4

1. वास्तविक संख्याएँ

 

प्रश्नावली 1.3

 

प्रश्नावली 1.3 


Q1. सिद्ध कीजिए कि √5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि √5 एक परिमेय संख्या है | 

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए, 

यहाँ 5 a2 को विभाजित करता है अत: 5 a को भी विभाजित करेगा | ....(1)

[ प्रमेय 1.3 द्वारा ]

अत: a = 5c माना      [ क्योंकि a 5 द्वारा विभाजित होता है अर्थात a का 5 कोई गुनाखंड है |]

 5b2 = a2 में a = 5c रखने पर

         5b2 = (5c)2

         5b2 = 25c2

            b2 = 5c2

यहाँ 5 b2 को विभाजित करता है अत: 5 b को भी विभाजित करेगा | ....(2)

[ प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 5 a तथा b दोनों को विभाजित करता है जिसमें 5 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है |

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि

अत: √5 एक अपरिमेय संख्या है |

Q2.  सिद्ध कीजिए  कि 3 + 2√5 एक अपरिमेय संख्या है |

हल :

इसके विपरीत मान लीजिए कि 3 + 2√5 एक परिमेय संख्या है | 

हम किसी भी परिमेय संख्या को p/q के रूप में व्यक्त कर सकते है जहाँ p तथा q दो पूर्णांक है और q  ≠ 0 है | 

इसलिए,

और p तथा q को उभयनिष्ठ गुणनखंड से विभाजित कर एक सह-अभाज्य संख्या a तथा b प्राप्त कर सकते हैं | 

चूँकि a तथा b पूर्णांक है और 2 तथा 3 भी पूर्णांक है | 

इससे एक विरोधाभासी परिणाम प्राप्त होता है कि √5 परिमेय संख्या है |

ऐसा विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि 3 + 2√5 एक परिमेय संख्या है |

अत: 3 + 2√5 एक अपरिमेय संख्या है | 

यहाँ 2 b2 को विभाजित करता है अत: 2, b को भी विभाजित करेगा | ....(1)

[ प्रमेय 1.3 द्वारा ]

अत: b = 2c माना      [ क्योंकि a 5 द्वारा विभाजित होता है |

यहाँ 2 a2 को विभाजित करता है अत: 2 a को भी विभाजित करेगा | ....(2)

[ प्रमेय 1.3 द्वारा ]

समीकरण (1) तथा (2) से हम पाते है कि 2 a तथा b दोनों को विभाजित करता है जिसमें 2 एक उभयनिष्ठ गुणनखंड है |

इससे हमारी इस तथ्य का विरोधाभास प्राप्त होता है कि a तथा b में 1 के अतिरिक्त कोई उभयनिष्ठ गुणनखंड नहीं है, क्योंकि हमने a तथा b को सह-अभाज्य प्राप्त किया था |  

यह विरोधाभासी परिणाम हमारी गलत कल्पना से प्राप्त हुआ है कि 

 

 

www.atpeducation.com

www.atpeducation.com

 

 

Page 3 of 4
Download Our Android App
Get it on Google Play
Feed Back

Roshan Class X says:

"6"

Shadab Khan Class X says:

"make fast all science pages geography "

Shivam Bajpai All Class says:

"ये पेज under construction क्युं है .plz fix this prob..."

Krishan Class X says:

"this very good website i really appreciate which provide no cost education to all medium classes"

Vimal Class XI says:

"Not able to find the content....as instructed."

Kamini Class X says:

"every chepter is imcomplete....this side is not useful"

Ashok Swami All Class says:

"10th science ka Lesson-8 ka page no.5 kab take under construction rahega please improve it."

Rishabh Gupta Class XI says:

"how can i understand difference between permutation and combination word problem"

Rishabh Gupta Class XI says:

"i want to learn parts of speech"

KASHIF ALI Class VIII says:

"Please update all the syllabus of class 8"

ATP Education

 

 

Follow us On Google+
Join Us On Facebook
Sponser's Link
Sponser's Link