ATP Education

NCERT Books Solutions for class 10 th

 

1. वास्तविक संख्याएँ : प्रश्नावली 1.1 Mathematics class 10th:Hindi Medium NCERT Book Solutions

NCERT Books Subjects for class 10th Hindi Medium

Page 1 of 4

1. वास्तविक संख्याएँ

 

प्रश्नावली 1.1

अभ्यास 1.1


प्र०1. युक्लिड विभाजन अल्गोरिथम के प्रयोग से HCF ज्ञात कीजिये |  

 (i) 135 और 225 (ii) 196 और 38220 (iii) 867 और 255

हल:  

(1)    135 और 225

a = 225, b = 135 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

225 = 135 ×1 + 90

135 = 90 ×1 + 45

90 = 45 × 2 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 45 {फिर उसमे से b का मान HCF होता है;}

HCF = 45

हल:

(ii)    196 और 38220

a = 38220, b = 196  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196      {फिर उसमे से b का मान HCF होता है;}

HCF = 196

हल:

(iii)   867 और 255

a = 867, b = 255 {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

38220= 196 ×195 + 0 {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

b = 196  {फिर उसमे से b का मान HCF होता है;}

HCF = 196

प्र०2. दर्शाइए कि कोई भी धनात्मक विषम पूर्णांक 6q + 1, या 6q + 3, या 6q + 5, के रूप का होता है जहाँ q कोई पूर्णांक है |

हल:

दर्शाना है: a = 6q + 1, 6q+3 या  6q+5

माना कि a कोई धनात्मक विषम पूर्णांक है;  जहाँ b = 6 होगा,

जब हम 6 से a को विभाजित करते है जो शेषफल क्रमश: 0, 1, 2, 3, 4 और 5 पाते है;

जहाँ 0 ≤ r < b

यहाँ a एक विषम संख्या है इसलिए शेषफल भी विषम संख्या प्राप्त होता है |

शेषफल होगा 1 या 3 या 5 

युक्लिड विभाजन अल्गोरिथम के प्रयोग से हम पाते है;  

a = 6q + 1, 6q+3 या 6q+5

प्र०3. किसी परेड में 616 सदस्यों वाली एक सेना (आर्मी) की टुकड़ी को 32 सदस्यों वाले एक आर्मी बैंड के पीछे मार्च करना है | दोनों समूहों को समान संख्या वाले स्तंभों में मार्च करना है | उन स्तंभों की अधिकतम संख्या क्या है, जिसमें वे मार्च कर सकते है ?

हल:

स्तंभों की अधिकतम संख्या = HCF (616, 32)

a = 616, b = 32  {सबसे बड़ी संख्या को a तथा सबसे छोटी संख्या को b मानते है }

युक्लिड विभाजन अल्गोरिथम के प्रयोग से

a = bq + r (तब)

616 = 32 ×19 + 8  {जब हमें r=0 प्राप्त हो जाता है तो हम आगे हल करना बंद कर देते है }

32 = 8 × 4 + 0

b = 8 {b का मान HCF होता है}

HCF = 8

इसलिए स्तंभों की अधिकतम संख्या = 8

प्र०4. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का वर्ग, किसी पूर्णांक m के लिए 3m या 3m + 1 के रूप का होता है |

हल :

दर्शाना है : a2 = 3m or 3m + 1

a = bq + r

माना कि a कोई धनात्मक पूर्णांक है जहाँ b = 3 और r = 0, 1, 2 क्योंकि 0 ≤ r < 3

तब a = 3q + r  कुछ पूर्णांक के लिए q ≥ 0

इसलिए, a = 3q + 0 or 3q + 1 or 3q + 2

अब हम पाते है;

a2 = (3q + 0)2 or (3q + 1)2 or (3q +2)2

a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 4

a2 = 9q2 or 9q2 + 6q + 1 or 9q2 + 12q + 3 + 1

a2 = 3(3q2) or 3(3q2 + 2q) + 1 or 3(3q2 + 4q + 1) + 1

यदि m = (3q2) or (3q2 + 2q)  or (3q2 + 4q + 1) हो तो

हम पाते है कि ;

a2 = 3m or 3m + 1 or 3m + 1

प्र०5. यूक्लिड विभाजन प्रमेयिका का प्रयोग करके दर्शाइए कि किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |

हल:

माना, a कोई धनात्मक पूर्णांक है;

युकिल्ड विभाजन प्रमेयिका के प्रयोग से;

a = bq + r जहाँ; 0 ≤ r < b

b = 9 रखने पर

a = 9q + r जहाँ; 0 ≤ r < 9

जब r = 0 हो;

a = 9q + 0 = 9q

a3  = (9q)3 = 9(81q3) या 9m जहाँ m = 81q3

जब r = 1 हो

a = 9q + 1 

a3 = (9q + 1)3 = 9(81q3 + 27q2 + 3q) + 1

      = 9m + 1  जहाँ m = 81q3 + 27q2 + 3q

जब r = 2 हो तो

a = 9q + 2 

a3  = (9q + 2)3 = 9(81q3 + 54q2 + 12q) + 8

      = 9m + 2  जहाँ m = 81q3 + 54q2 + 12q

अत: किसी धनात्मक पूर्णांक का घन 9m, 9m + 1 या 9m + 8 के रूप का होता है |  

ATP Education
www.atpeducation.com ATP Education www.atpeducation.com

ATP Education

 

 

Page 1 of 4

इस पाठ के अन्य दुसरे विषय भी देखे :

1. प्रश्नावली 1.1

2. प्रश्नावली 1.2

3. प्रश्नावली 1.3

4. प्रश्नावली 1.4

NCERT Solutions

Select Class for NCERT Books Solutions

 

 

 

Join Us On Facebook

 

Chapter List


Our Educational Apps On Google Play Store